Alzheimer s disease based on multimodal fusion: tissue quantification based on
hybrid fuzzy-genetic-possibilistic model and discriminative classification
ed on the SVDD model, Brain Science, 9, pp. e289.
. and Huynh, T. T. (2019). Identifying SNAREs by incorporating deep learning
hitecture and amino acid embedding representation, Frontiers in Physiology, 10,
1501.
Y., Belew, A., Valdes, K. M. and Islam, E. (2015). essential genes in the core
ome of the human pathogen Streptococcus pyogenes, Scientific Reports, 5, pp. 9838.
., Hasani, R., Amini, A., Henzinger, T. A., Rus, D. and Grosu, R. (2020). Neural
uit policies enabling auditable autonomy, Nature Machine Intelligence, 2, pp.
–652.
K. G., Zhou, Y., Blair, P. L., Grainger, M., Moch, J. K., Haynes, J. D., De La
ga, P., Holder, A. A., Batalov, S., Carucci, D. J. and Winzeler, E. A. (2003).
covery of gene function by expression profiling of the malaria parasite life cycle,
ence, 301, pp. 1503–1508.
016). LS-GKM: a new gkm-SVM for large-scale datasets, Bioinformatics, 32,
2196–2198.
C. A., Boden, M., Horwege, S., Lindner, S. and Morgenstern, B. (2014). Fast
nment-free
sequence
comparison
using
spaced-word
frequencies,
informatics, 30, pp. 1991–1999.
M., Robson, B. and Garnier, J. (1986). An algorithm for secondary structure
ermination in proteins based on sequence similarity, FEBS Letters, 205, pp.
–308.
K. K., Delong, A. and Frey, B. J. (2018). Inference of the human
yadenylation code, Bioinformatics, 34, pp. 2889–2898.
008). MOST: detecting cancer differential gene expression, Biostatistics, 9, pp.
–418.
e, M. A., Parikh, N. I., Chen, W. X. and Dye, T. D. (2013). Assessing differential
ression in two-color microarrays: a resampling-based empirical Bayes
roach, PLoS One, 8, pp. e80099.
ng, Y., Li, C., Marquez-Lago, T. T., Leier, A., Rawlings, N. D., Haffari, G.,
vote, J., Akutsu, T., Chou, K., Purcell, A. W., Pike, R. N., Webb, G. I., Smith,
I., Lithgow, T., Daly, R. J., Whisstock, J. C. and Song, J. (2019). Twenty years
bioinformatics research for protease-specific substrate and cleavage site
diction: a comprehensive revisit and benchmarking of existing methods, Briefs
Bioinformatics, 20, pp. 2150–2166.
Durbin, R. (2009). Fast and accurate short read alignment with Burrows-
eeler transform, Bioinformatics, 25, pp. 1754–1760.
Wang, Y. B., You, Z. H., Li, Y. and An, J. Y. (2018). PCLPred: A bioinformatics
thod for predicting protein-protein interactions by combining relevance vector
chine model with low-rank matrix approximation, International Journal of
lecular Science, 19, pp. e1029.